3.180 \(\int \sqrt{a+b \text{sech}^2(x)} \tanh (x) \, dx\)

Optimal. Leaf size=40 \[ \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right )-\sqrt{a+b \text{sech}^2(x)} \]

[Out]

Sqrt[a]*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]] - Sqrt[a + b*Sech[x]^2]

________________________________________________________________________________________

Rubi [A]  time = 0.0630451, antiderivative size = 40, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {4139, 266, 50, 63, 208} \[ \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right )-\sqrt{a+b \text{sech}^2(x)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sech[x]^2]*Tanh[x],x]

[Out]

Sqrt[a]*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]] - Sqrt[a + b*Sech[x]^2]

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{a+b \text{sech}^2(x)} \tanh (x) \, dx &=-\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{x} \, dx,x,\text{sech}(x)\right )\\ &=-\left (\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x} \, dx,x,\text{sech}^2(x)\right )\right )\\ &=-\sqrt{a+b \text{sech}^2(x)}-\frac{1}{2} a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\text{sech}^2(x)\right )\\ &=-\sqrt{a+b \text{sech}^2(x)}-\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \text{sech}^2(x)}\right )}{b}\\ &=\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right )-\sqrt{a+b \text{sech}^2(x)}\\ \end{align*}

Mathematica [B]  time = 0.256738, size = 90, normalized size = 2.25 \[ -\frac{\sqrt{a+b \text{sech}^2(x)} \left (-\sqrt{2} \sqrt{a} \sqrt{b} \cosh (x) \sqrt{\frac{a \cosh (2 x)+a+2 b}{b}} \sinh ^{-1}\left (\frac{\sqrt{a} \cosh (x)}{\sqrt{b}}\right )+a \cosh (2 x)+a+2 b\right )}{a \cosh (2 x)+a+2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sech[x]^2]*Tanh[x],x]

[Out]

-(((a + 2*b + a*Cosh[2*x] - Sqrt[2]*Sqrt[a]*Sqrt[b]*ArcSinh[(Sqrt[a]*Cosh[x])/Sqrt[b]]*Cosh[x]*Sqrt[(a + 2*b +
 a*Cosh[2*x])/b])*Sqrt[a + b*Sech[x]^2])/(a + 2*b + a*Cosh[2*x]))

________________________________________________________________________________________

Maple [A]  time = 0.034, size = 43, normalized size = 1.1 \begin{align*} -\sqrt{a+b \left ({\rm sech} \left (x\right ) \right ) ^{2}}+\sqrt{a}\ln \left ({\frac{1}{{\rm sech} \left (x\right )} \left ( 2\,a+2\,\sqrt{a}\sqrt{a+b \left ({\rm sech} \left (x\right ) \right ) ^{2}} \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sech(x)^2)^(1/2)*tanh(x),x)

[Out]

-(a+b*sech(x)^2)^(1/2)+a^(1/2)*ln((2*a+2*a^(1/2)*(a+b*sech(x)^2)^(1/2))/sech(x))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{sech}\left (x\right )^{2} + a} \tanh \left (x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sech(x)^2 + a)*tanh(x), x)

________________________________________________________________________________________

Fricas [B]  time = 2.28792, size = 4658, normalized size = 116.45 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x),x, algorithm="fricas")

[Out]

[1/4*((cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a)*log(((a^3 + 2*a^2*b + a*b^2)*cosh(x)^8 + 8*(a^3
+ 2*a^2*b + a*b^2)*cosh(x)*sinh(x)^7 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^8 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)
*cosh(x)^6 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3 + 14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3
 + 2*a^2*b + a*b^2)*cosh(x)^3 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x))*sinh(x)^5 + (6*a^3 + 14*a^2*b + 9
*a*b^2)*cosh(x)^4 + (70*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 6*a^3 + 14*a^2*b + 9*a*b^2 + 30*(2*a^3 + 5*a^2*b +
 4*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^5 + 10*(2*a^3 + 5*a^2*b + 4*a*b^2
 + b^3)*cosh(x)^3 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 + 2*(2*a^3 + 3*a^2*b)*cosh(x)^2 + 2*
(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^6 + 15*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^4 + 2*a^3 + 3*a^2*b + 3*(
6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*((a^2 + 2*a*b + b^2)*cosh(x)^6 + 6*(a^2 + 2*a*b + b
^2)*cosh(x)*sinh(x)^5 + (a^2 + 2*a*b + b^2)*sinh(x)^6 + 3*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 3*(5*(a^2 + 2*a*b +
b^2)*cosh(x)^2 + a^2 + 2*a*b + b^2)*sinh(x)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cosh(x)^3 + 3*(a^2 + 2*a*b + b^2)*cos
h(x))*sinh(x)^3 + (3*a^2 + 4*a*b)*cosh(x)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 18*(a^2 + 2*a*b + b^2)*cosh(
x)^2 + 3*a^2 + 4*a*b)*sinh(x)^2 + a^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^5 + 6*(a^2 + 2*a*b + b^2)*cosh(x)^3 +
 (3*a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*s
inh(x) + sinh(x)^2)) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^7 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^5
+ (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^3 + (2*a^3 + 3*a^2*b)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x
) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6
)) + (cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sin
h(x)^4 + 2*b*cosh(x)^2 + 2*(3*a*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2
- 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(a*co
sh(x)^3 + b*cosh(x))*sinh(x) + a)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*sqrt((a*cosh(x)^2 +
 a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)
^2 + 1), -1/2*((cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a)*arctan(sqrt(2)*((a + b)*cosh(x)^2 + 2*
(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sin
h(x)^4 + (2*a^2 + 3*a*b)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + 3*a*b)*sinh(x)^2 + a^2 + 2*(2*(a^2 + a
*b)*cosh(x)^3 + (2*a^2 + 3*a*b)*cosh(x))*sinh(x))) + (cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a)*
arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a +
2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a +
2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) + 2
*sqrt(2)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(cosh(x)^2 +
 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \operatorname{sech}^{2}{\left (x \right )}} \tanh{\left (x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)**2)**(1/2)*tanh(x),x)

[Out]

Integral(sqrt(a + b*sech(x)**2)*tanh(x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{sech}\left (x\right )^{2} + a} \tanh \left (x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x),x, algorithm="giac")

[Out]

integrate(sqrt(b*sech(x)^2 + a)*tanh(x), x)